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Abstract

The expanded equations for torque and force on a cylindrical permanent magnet

core in a large-gap magnetic suspension system are presented. The core is assumed to

be uniformly magnetized, and equations are developed for two orientations of the

magnetization vector. One orientation is parallel to the axis of symmetry, and the

other is perpendicular to this axis. Fields and gradients produced by suspension sys-

tem electromagnets are assumed to be calculated at a point in inertial space which
coincides with the origin of the core axis system in its initial alignment. Fields at a

given point in the core are defined by expanding the fields produced at the origin as a

Taylor series. The assumption is made that the fields can be adequately defined by

expansion up to second-order terms. Examination of the expanded equations for the

case where the magnetization vector is perpendicular to the axis of symmetry reveals

that some of the second-order gradient terms provide a method of generating torque

about the axis of magnetization and therefore provide the ability to produce six-

degree-of-freedom control.

Introduction

This paper develops the expanded equations for

torque and force on a cylindrical permanent magnet core

in a large-gap magnetic suspension system. The core is

assumed to be uniformly magnetized, and equations are

developed for two orientations of the magnetization vec-
tor. One orientation is parallel to the axis of symmetry,

and the other is perpendicular to this axis. Fields and gra-

dients produced by suspension system electromagnets

are assumed to be calculated at a point in inertial space

which coincides with the origin of the core axis system in
its initial alignment with a reference inertial axis system.

Fields at a given point in the core are defined by expand-

ing the fields produced at the origin as a Taylor series.

The assumption is made that the fields can be adequately

described by expansion up to second-order terms. The

expansion of the fields and gradients is presented in

appendix A.

The equations for torques and forces on a magnetic

core that are produced by a large-gap magnetic suspen-

sion system have been presented and discussed in a num-
ber of papers. For example, see references 1 through 6.

The torques on the core are usually approximated as a

function of the external or applied fields at the centroid

of the core, and the forces on the core are usually approx-

imated as a function of the gradients of the applied fields

at the centroid. It is generally assumed that terms that are

a function of second-order or higher gradients of the

applied fields at the eentroid can be neglected. In practi-

cal applications that involve large-gap magnetic suspen-

sion systems, these assumptions have proven to be valid.
For an axisymmetric core, such as a cylinder, it can be

shown that if the direction of magnetization is along the
axis of symmetry, then the torque about that axis, pro-

duced by the applied fields and gradients of the applied

fields, is always zero (ref. 3). Various methods of over-

coming this constraint, which include shaping the core

and using nonuniform three-dimensional magnetization,
are discussed in references 4 and 7. However, examina-

tion of the expanded equations for a cylindrical core

reveals that for the case of uniform magnetization per-

pendicular to the axis of symmetry, some of the second-

order gradient terms provide a method of generating

torque about the axis of magnetization and therefore the

ability to produce six-degree-of-freedom control (ref. 8).

For completeness, all gradient terms for expansion of the

fields up to second order are presented.

Finally, instead of developing the torque and force

equations from a set of governing equations that are a

function of core volume, core magnetization vector, and

suspension system fields and gradients, appendix B pre-
sents a development that begins at a more fundamental

level in an attempt to provide better insight into the ori-

gin of these equations than is commonly available in the
literature.

Symbols

A

a

B

h

[_B]

F

_F

I

l

m

area, m 2

radius of core, m

magnetic flux density vector, T

expanded magnetic flux density vector, T

matrix of field gradients, T/m

matrix of expanded field gradients, T/m

total force vector on core, N

force vector on incremental volume of core, N

coil current vector, A

length of core, m

magnetic moment vector, A-m 2



M

Om

r

T

_T

T m

U

V

W

6v

x,y,z

0

V

magnetic moment vector of dipole with incre-
mental volume, A-m 2

magnetization vector, A/m

pole strength, A-m

position vector, m

total torque vector on core, N-m

torque vector on incremental volume of core,
N-m

torque on incremental volume of core about

core origin, N-m

inertial coordinate to suspended-element coor-
dinate vector-transformation matrix

potential energy

core volume, m 3

work

incremental volume, m 3

coordinates in orthogonal axis system, m

Euler orientation for 3, 2, 1 rotation sequence,
rad

gradient operator

Subscripts:

x, y, z components along x-, y-, z-axes, respectively

/j partial derivative of/component in j-direction

(ij)k partial derivative of/j partial derivative in
k-direction

Matrix notations:

[ ]T transpose of matrix

L J row vector

A bar over a symbol indicates that it is referenced to

suspended-element coordinates.

Magnetic Torques and Forces

The torques and forces on a cylindrical permanent

magnet core are developed in this section by integrating
the equations for torques and forces on an incremental

volume of the core with magnetic moment M_Sv over the

core volume. These equations are developed in appendix

B. Figure 1 shows the cylindrical core and the core coor-

dinate system. The core coordinate system consists of a

set of orthogonal _, ), _ body-fixed axes that are initially

aligned with a set of orthogonal x-, y-, z-axes fixed in

inertial space. In order to define the fields and gradients

k_,Z

t

I

I

l/2 __'
I

Y,Y

Figure 1. Core coordinate system.
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at any point in the core, the fields and gradients at the ori-

gin of the core axis system are expanded as a Taylor

series. It is assumed that the fields can be adequately

described by expansion up to second-order terms. The

expanded fields and gradients in both inertial and core

coordinates are presented in appendix A. For simplicity
in developing the equations in this section, relative
motion between the core and the reference inertial coor-

dinate system is assumed to be zero. This assumption

removes the requirement to transform between the iner-

tial and core coordinate systems and eliminates a signifi-

cant number of components which are small relative to

the fundamental terms in the equations when small-angle

assumptions are used. In particular, the transformation of

second-order gradient terms from inertial to core coordi-

nates is very complicated, as illustrated by equa-
tion (A14). The torque on an incremental volume of the

core, about the core origin, can be written as

8T = [3T + (r x [3F) (I)

where 8T and 8F are the torque and force on the incre-

mental volume due to the field at that location, and

is the position vector of the incremental volume

(fig. 2). The total torque on the core can be written as

V

where the integration is over the core. Substituting equa-
tions (B20) and (B21) results in

= [ {(_ x B) + [i-x(_. V)h]} dv (3)

The total force on the core can be written as

= _ (M • V)i_ dv (4)
V

The term (M • V)B can be written as (ref. 5)

(_ • V)B = [OB]_ (5)

Z

Figure 2. Incremental core volume.

Y
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where

and

fixx Bxy Bxit

IOB] = Byx Byy B_,,- (6)

Bzx Bzy Bz

M= M 9 (7)

M

In equation (6) the notation fij = Ofi/OJ is used.

Magnetization Along Axis of Symmetry

For orientation of the magnetization vector along the

axis of symmetry (x-axis) of the permanent magnet core,

the only nonzero term in M is M_. Expanding
equation (5) results in

LBxzJ

Substituting equation (8) into the second part of equation

(3) and expanding results in

r x (M • V)B = M_] (i]_x_ _ _.tz_) _ (9)

Expanding the first part of equation (3) results in

f°tx B = M_ -fiz (IO)

fir

The components of equation (3) become

T_ = 0 + M_ I (fixzY - fixyZ.) dv (11)

4

T_ = -M I I _3zdv + M I I (_3xxi_- _3xzI) dv (12)

T_= M_If3ya_+M_,I(Bxy_-Bxx_)dv (13)
v V

Evaluating I BxzS' dv first
v

"':
V V I:

V V

(14)

where Bxz has been expanded by using a Taylor series,

as detailed in appendix A, and the notation

f, t,_k - O(3fi/Oj)/Ok has been used. All the integrals(7, -
involving first-order terms in equation (14) are zero.

Evaluating I _2 dv yields

l/

J-y__) _2 d_ d_ d._

v -112

= (a4/4)ltl (15)

_a 2 _2where Yl(Z) -- Y2(i) = - z , a is the radius of the
permanent magnet core, and l is the length (fig. 1). Since

the area2of the face of the permanent magnet core is
A = rta and the volume is v = Al, equation (15)
reduces to

(a4/4)_1 = (a2/4)v (16)

Substituting in equation (14) results in

I (3xz _ dv = (a2/4)vB(xy)z (17)
V

Evaluating _ (3,_yi dv in a similar manner results in

I (3xyi dv = (a2/4)vB(xy)z (18)

V

which is equal to equation (17). Therefore the torques

about the _-axis due to second-order gradients cancel



out and T_ = 0 asexpected.Goingnext to equa-
tion(12),

and

f f_zdv= vIB z + (12/24)B(zx)x + (a2/8)B(zy)y
V

+(a2/8)B(zz)zl (19)

(fixx - fix  ) dv =
12

Substituting into equation (12) results in

Ty = -vM_IB z + (12/24)B(zx)x + (a2/8)B(zy)y

+ (o2/8)B zz>zl+

-(12/12)]B(xx) z

Continuing to equation (13),

f By dv = vIny + (12/24)n(yx)x + (a2/8)n(yy)y

!2

+ (a2/8)B(yz)z]

and

(fixy - fixxY,) dv

v[(a2/4) - (12/12)]B(xx)z (20)

(21)

(22)

= v[(12/12) - (a2/4)]B(xx)y (23)

Substituting into equation (13) results in

T_ = vMi[By + (12/24)B(yx)x + (a2/8)B(yy)y

+ (a2/8)B(yz)z] + vMyc[(12/12)

- (a2/4) ]B(xx)y (24)

Finally, noting that B(i)) k = B(ik) j = Bqk)i . . . and collect-
ing terms, the components of torque become

T_ = 0 (25)

= 2
Ty -vMycB z - vM._[(a /4)-(12/8)]B(xx)z

2
- vM_(a /8)(B(yy)z + B(zz)z) (26)

T_ vMycBy + vM_[(12/8) - (a 2= /4) ]B{xx)y

- vMi(a2/8)(B(yy)y + B(yz)z) (27)

The force on the core, equation (4), can be evaluated

in a similar manner. The components of equation (4) are

F_ = M _ I Bxx dv (28)

Fy = M_ ff3xy dv (29)
V

F_ = M_ I [3xz dv (30)

Expanding the integral of equation (28) results in

fixxdv = f (B xx + B(xx)y._ + B(xx)zZ
V 12

+ B(xx)x k dv (31)

Since the integrals containing first-order terms in ._, S',

and _ are zero, equation (31) reduces to

F_ = M_f Bxxdv = vMxBxx (32)
V

Evaluating equations (29) and (30) results in

Fy = vMycBxy (33)

and

F_ = vMycB xz (34)
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MagnetizationPerpendiculartoAxisof
Symmetry

For orientation of the magnetization vector perpen-

dicular to the axis of symmetry (x-axis), the only nonzero

term in M is M_. Equation (5) becomes

ixl
Z

(35)

and the second part of equation (3) becomes

1
r×(M- V)l_ =M_[ (13xz__BzzYC) [ (36)

L(-fix y+ fiy  )j

The first part of equation (3) becomes

-fly

Substituting (36) and (37) into (3) results in

Ti = _M_IB, dv+M_I(Bzz_-Byzz)dv (38)
v v

TS, = Ma I I3xdv + M_ I (Bxz_ -13zz2 )dv

V

(39)

T_. = 0+M_I(I_yzX - f3xzy)dv (40)
V

Evaluating the integrals as before and collecting terms
results in

T_ =

(41)

vMaB x + vM_[ ( 3a2 /8 ) - (12/12) ]B (xz) z

+ vM_(12/24)B(xx)x + vMa(a2/8)B(xy)y (42)

T_ = vM_[(12/12) - (a2/4) ]B(xy)= (43)

Tyc = -vM_By- vM_(12 / 24 )B(xx)y

- vMa(a2/8)(B (yy)y + B(yz) z)

The components of the force (eq. (4)) using equa-

tion (35) becomes

F i = M I _3xzdv = vM_Bxz (44)

Fy = M_I fiyzdv = vM_By z (45)

F_, = M_ I _3zzdv = vM_B zz (46)
V

Discussion of Results

Examination of equations (25) to (27), (32) to (34),

(41) to (43), and (44) to (46) reveals that, for expansion

of the applied fields up to second-order terms, no cou-

pling exists between force and torque components. As
stated earlier, it is generally assumed that the higher

order torque terms, which are functions of second order

gradients, can be neglected. However, equation (43) indi-
cates that for magnetization perpendicular to the axis of

symmetry, torque about the axis of magnetization can be

generated by controlling a higher order term directly,

thus allowing the core to be controlled in six degrees of

freedom. For a cylindrical permanent magnet core mag-

netized along the axis of symmetry, from equation (25),

only five-degree-of-freedom control is possible.

Concluding Remarks

This paper has developed the expanded equations for

torque and force on a cylindrical permanent magnet core

in a large-gap magnetic suspension system. The core was
assumed to be uniformly magnetized, and equations were

developed for two orientations of the magnetization

vector. One orientation was parallel to the axis of sym-

metry of the core and the other was perpendicular to this

axis. It is generally assumed that terms that are a function
of second-order or higher gradients of the applied fields

can be neglected. In practical applications involving

large-gap magnetic suspension systems, these assump-

tions have proven to be valid. However, in the case
where the magnetization vector is perpendicular to the

axis of symmetry of the core, the expanded equations
indicate that torque about the magnetization vector can

be produced by controlling a second-order gradient
directly. This case allows the core to be controlled in six

degrees of freedom whereas a cylindrical permanent

magnet core magnetized along its axis of symmetry can
be controlled only in five degrees of freedom.

NASA Langley Research Center
Hampton, VA 23681-(X)01
October 24, 1996



Appendix A

Expansion of Fields and Gradients About the

Nominal Operating Point of a Cylindrical Per-

manent Magnet Core

In appendix A the fields and gradients produced by
the suspension system electromagnets are expanded by

using a Taylor series about the initial suspension point of

the permanent magnet core. The assumption is made that

the fields can be adequately described by expansion up to

second-order terms. Figure 1 shows the cylindrical core

and core coordinate system. The core coordinate system

consists of a set of orthogonal k, _, _ body-fixed axes

that define the motion of the core with respect to an
orthogonal x, y, z system fixed in inertial space. The core

coordinate system is initially aligned with the x, y, z sys-
tem. The transformation from inertial coordinates to core

coordinates is given by

= [T m] (A1)

where [Tin] is the orthogonal transformation matrix for
a 3, 2, 1 (z, y, x) Euler rotation sequence and is defined as

lTm] =
C0zC0y S0zC0y --SOy 1

[COzSOySO x-SOzcOx) (SOzSOySO x +cOzcOx) C0yS0x]

[C0zS0yC0 x + S0zS0x) (SOzSOyCO x- C0zS0x) c0yc0xJ

(A2)

where sin has been shortened to s, cos has been shortened

to c, and 0 z, 0y, and 0 x are angles of rotation about the
z-, y-, and x-axes, respectively. The field B and gradients

of B produced by the suspension system electromagnets,
which are fixed in the inertial frame, are calculated at the

origin of the x, y, z system.

Expanding B about the origin of the x, y, z system as a
Taylor series, up to second order, results in

= B+(r'V)B+(I/2)(r'V)2B (A3)

where r = and V is the gradient operator. Using

compact notation, each element of !] in equation (A3)

can be written as

0B i 02Bi

]3 i = Bi+-_rr +(1/2)rT_r
Or

(A4)

where

OB i _)B i _)B i OB

= _x ()y
(A5)

and

O2Bi

Or 2

-_(OBi/Ox ) O(OBi/Ox ) O(OBi/Ox )

i)x Oy Oz

O(OBi/_)y) O(_Bi/Oy) O(_Bi/_y)

Ox _y Oz

3(OBi/Oz) _(i)Bi/Oz) o_(c_Bi/t)z )

Ox _y _z

(A6)

Using the notation f/j = Ofi/O j and f(o)k =
O(Ofi/Oj)/Ok, equations (A5) and (A6) can be written

as

_B i
--_-r =[ Bix Biy Biz I (A7)

and

O2B i

Or 2

B(ix)x

= B(iy)x

B(iz)x

B(ix)y B(ix)z 1

B(iy)y _:i_ilJB(iz)y

The first-order gradients of !_ can be written as

(A8)

13ij= B/j + /_r r (A9)

where

O(OBi/Oj)
Or - k B(ij)x B(ij)y B(ij)z J (AlO)



The expandedfields can be expressed in core
coordinates as

Transforming back into core coordinates,

= B + (_ • V)B + (1/2)(i'- V)2B (All)

where i" = I_1
L__J

fi = [Tm]B,

tion (A 1),

is the displacement in core coordinates,

and V7 = [Tm]V. Since, from equa-

r = [Tm]Ti " (A12)

each element of B can be expanded in inertial coordi-

nates by substituting equation (AI2) into equation (A4).

¢3Bi T-13i = Bi+-_-[T,,,] r+(1/2)Fr[Tm] [T,.]rr (AI3)

- ()Bx T _2Bx 1"-

Bx+--_-[Tm] _+(I/2)F r [Tm]-_r2 [T,.]

IBy OBy T- °_2By T+--_--[T m] r+(l/2)i r [T,_]--_-r2 [T,.]

B z c)Bz T- _)2Bz T -+--_--[T.] r+(l/2)_ r [Tm]-_-r2 [T,.I

(A14)

The expansion of equation (A14) can be simplified by

using small-angle assumptions (ref. 6). Under small-

angle assumptions, cos0 = 1, sin0 = 0, and products

of angles are neglected. The transformation matrix [Tm ]
then becomes

f l 0 z -0 1
[T m] =-0. 1 (a15)

0_ -0 x



Appendix B

Torques and Forces on a Magnetic Dipole
With Incremental Volume

The torques and forces on a magnetic dipole in a
steady magnetic field are identical to those on an infini-

tesimal current loop with the same magnetic moment

(ref. 9). Therefore, the equations for torque and force on

an infinitesimal current loop will be developed first by

using the fundamental relationship for the force on a

current-carrying-conductor element in a uniform, steady

magnetic field. For a discussion of magnetic dipoles and
infinitesimal current loops, see references 9 and 10.

Infinitesimal Current Loop

Consider a plane loop of conductor with steady cur-

rent I located in the external, uniform, steady magnetic
field B (fig. B1). In this region VxB = VeB = 0.

The force on an element dl of the conductor is given by
the fundamental relationship (obtained from the Lorentz

force law)

dF = IdlxB (B1)

where dF is a vector indicating magnitude and direction

of force on the conductor element; I is the scalar magni-
tude of the current in the conductor element; dl is a vec-

tor whose magnitude equals the length of the conductor

element and whose direction is in the positive direction

of the current; and B is a vector indicating magnitude and

direction of the flux density of the external field compo-

nent. The torque on the loop can be written as

T = I_[r x (dl xB)] (B2)

where r is the position vector of dl and the integration is

around the loop. By using the identity

rx(dl×B) = dl(r*B)-B(r*dl) (B3)

equation (B2) can be written as

T = I[_(r• B)dl-B_r•dl] (B4)

Using Stokes's theorem and a related result (ref. 9,

p. 289), the line integrals in equation (B4) can be trans-

formed into surface integrals resulting in

S

where dA is a vector whose magnitude is a differential

area and whose direction is normal to the plane of the
current loop in the sense of the right-hand rule relative to

the direction of current flow, V is the gradient operator,
and the integrals are over the surface that is defined

by the conductor loop. Since V×r is zero and

V(r • B) = B for constant B, equation (B5) simplifies
to

/.

T = IJ(dAxB) (B6)

$

Taking the integral results in

T = IA x B (B7)

An infinitesimal current loop can be defined by letting A

go toward zero and I go toward infinity, keeping the

product IA finite. For an infinitesimal current loop, the
requirement that B be uniform no longer exists. The

product IA is called the magnetic moment of the loop

and is designated by the letter m. Therefore equation
(B7) becomes

T = mxB (B8)

The torque T acts on the infinitesimal current loop in a

direction to align the magnetic moment m with the exter-

nal field B. If m and B are misaligned by the angle 0, the
magnitude of the torque is

T = mBsin0 (B9)

To increase 0 by the amount dO, work dWmust be done

against the torque T resulting in an increase in potential

energy dU:

dU = dW = Td0 = mBsin0d0 (B10)

The potential energy of an infinitesimal current loop in

an external magnetic field can then be obtained by inte-
grating equation (B 10):

U =-mBcos0 =-m•B (BI1)

where the constant of integration is chosen to be zero

when m is perpendicular to B. The force on the infinites-

imal current loop can be obtained from equation (B 11 ). If

an external force F displaces the infinitesimal current
loop by the infinitesimal distance dr, then the work done

dW will be equal to a decrease in potential energy, --dU:

dW = F •dr = -dU = -VU * dr (B12)

Therefore

F =-VU = V(m*B) (B 13)

9



Theright-handsideof equation(B13)canbeexpanded
as

V(m • B) = m x (V x B) + (m • V)B

+ Bx(Vxm)+ (B•V)m (B14)

Since (V • B), (V × B), and (V × m) are zero, equa-
tion (BI3) can be written in the form

F = (m • V)B (B15)

This form is generally used in the development of the

equations for large-gap magnetic suspension systems

(refs. 1 through 6).

Magnetic Dipole With Incremental Volume

The magnetic moment of a permanent magnet dipole

with north and south poles separated by length I and with

pole strength Qm is defined as

m = Qml (B16)

The magnetic moment m is a vector pointing from the

south pole to the north pole. In the case of an actual mag-

net, Qm and I may be indefinite but m can be determined

and is sufficient to specify the fields of the magnet at a

large distance from it. At large distances, a magnetic

dipole with magnetic moment Qml can be treated the
same as an infinitesimal current loop with magnetic

moment IA and is identical in effect if Qm l = IA. There-

fore, in a steady magnetic field B the equations for

torques and forces on a magnetic dipole with magnetic
moment rn are the same as equations (B8) and (B15).

In theory, it can be assumed that a permanent magnet

of a given volume v consists of a large number of uni-

formly distributed permanent magnet dipoles with incre-
mental volumes _5v which are oriented in the same

direction. The magnetic moment 8m of a given dipole
with incremental volume 5v can be conveniently

described by a quantity called the magnetization M,
which is defined as the magnetic moment per unit vol-

ume. That is,

M = 5m/fv (BI7)

The total magnetic moment m for a given permanent

magnet can then be written as

m = fMdv (BI8)
12

where the integration is over the volume of the perma-

nent magnet. Magnetization is also a vector and has the
same direction as m. If the permanent magnet is uni-

formly magnetized, that is, M is constant over the vol-

ume of the permanent magnet, then

m = My (B19)

For a discussion of magnetic dipoles and magnetization,

see reference 10.

The torques and forces on an incremental volume of

permanent magnet material, in terms of the magnetiza-

tion M, can then be written as

and

_ST = (M × B)/Sv (B20)

5F = (M • V)BSv

from equations (B8), (B15), and (B17).

(B21)

10
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Figure B 1. Plane loop of conductor with steady current I in uniform steady magnetic field B.
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